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Introduction
The cannabinoid type 2 receptor (CB2R) is a G-protein-coupled 
receptor that was cloned in 1993[1].  Since then, the expres-
sion and function of CB2Rs in the brain have been debated.  
Early studies suggested that CB2Rs were absent in the brain 
because CB2 mRNA transcripts were not detected in brain tis-
sue using various methods[2–5].  Based on these findings, CB2Rs 
have been considered the “peripheral” cannabinoid recep-
tor[1, 6, 7].  Recently, this concept has been challenged by the 
identification of CB2Rs throughout the central nervous system 
(CNS)[5, 6].  Compared with CB1Rs, brain CB2Rs exhibit several 
unique features: (1) Brain CB2Rs have lower expression levels 
than CB1Rs, suggesting that CB2Rs may not mediate the effect 
of cannabis under normal physiological conditions.  (2) Brain 
CB2Rs are highly inducible; thus, under some pathological 
conditions (eg, addiction, inflammation, anxiety), CB2R expres-

sion is quickly enhanced in the brain[8].  This finding suggests a 
close relationship between the alteration of CB2R expression/
function and various psychiatric and neurological diseases.  (3) 
Brain CB2Rs have a specific distribution.  Given that they are 
chiefly expressed in neuronal somatodendritic areas[9] (post-
synaptic), the activation of CB2Rs may lead to opposing effects 
from CB1Rs.  For example, CB1Rs are predominantly expressed 
on neuronal terminals, especially on GABAergic terminals 
(presynaptic) in ventral tegmental area (VTA) dopamine (DA) 
neurons[10].  The activation of CB1Rs reduces GABA release 
onto DA neurons, leading to an increase in DA neuronal fir-
ing through a disinhibition mechanism.  However, CB2Rs are 
mainly located on postsynaptic somatodendritic areas, and the 
activation of CB2Rs reduces VTA DA neuron firing and excit-
ability[11].  Considering these characteristics, CB2Rs appear to 
be an important substrate for neuroprotection[12], and targeting 
CB2Rs will likely offer a novel therapeutic strategy for treating 
neuropsychiatric and neurological diseases without typical 
CB1R-mediated side effects[13].  Thus, an urgent need to under-
stand the functional effects of CB2Rs in the brain has emerged.  
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Unfortunately, CB2R-mediated modulation of neuronal func-
tions, including ion channels, receptors, synaptic transmission 
and plasticity, and neuronal networks in the CNS, has not 
been well investigated, and to date, studies of the functional 
effects of CB2Rs in neurons have ignited debate and contro-
versy due to the following reasons: (1) a lack of highly selec-
tive CB2R antibodies[14]; (2) a lack of full knockout (KO) CB2R 
mice as the two types of CB2R KO mice that have been recently 
made available are partial knockouts[7]; and (3) under some 
conditions, CB1R and CB2R can form a heteromer[15], which 
makes the identification of CB2R function even more complex 
and difficult.  Nevertheless, by combining multiple experi-
mental approaches, several recent papers have described 
CB2R expression and function in the brain neurons.  Recently, 
we reported that functional CB2R was expressed in VTA DA 
neurons, and activation of VTA CB2Rs reduces neuronal excit-
ability and cocaine-seeking behavior[11].  It has been reported 
that CB2R modulates hippocampal CA1 synaptic plasticity[16] 
and CA3 neural plasticity and synchronization[17].  In addi-
tion, a recent report showed that CB2R-dependent inhibition of 
DA release underlies the positive allosteric modulation of the 
M4 muscarinic receptor in antipsychotic-like effects[18].  These 
accumulating lines of evidence suggest that brain CB2Rs are 
important in the modulation of brain function and disorders.  

Brain CB2R expression
Although early studies were not able to detect CB2 mRNA 
transcripts in brain tissue using various methods[2–5], recent 
lines of evidence show that significant CB2 mRNA has been 
detected by in situ hybridization (ISH) in the globus pallidus 
of non-human primates[19].  RT-PCR analysis has also been 
used to detect CB2 mRNA expression in various brain regions, 
including the retina[20], cortex[19, 21–23], striatum[2, 23], hippocam-
pus[17, 19, 24], amygdala[22, 23], brainstem[25], and cerebellum[26].  
Furthermore, two CB2 mRNA transcripts (CB2A and CB2B) are 
transcribed from two independent promoters in rodent and 
human tissue[21].  Recently, we have confirmed that CB2 mRNA 
is relatively highly expressed in VTA DA neurons[11].  More-
over, immunoblot and immunohistochemical (IHC) assays 
have detected significant CB2-like bands or immunostaining in 
various brain regions[25, 27–30], including the VTA[11].  These find-
ings suggest that CB2R expression exists not only in peripheral 
tissue but also in the brain, although the CB2R expression level 
in the brain is much lower than that of CB1R.  This low-level 
brain CB2R expression suggests that CB2R may not participate 
in important brain physiology function; thus, unlike CB1Rs 
that mediate serious psychiatric side effects after activation, 
pharmacological intervention of CB2Rs has much fewer side 
effects.  In addition to brain neurons, brain glia cells express 
CB2Rs[31, 32], where CB2Rs play an important role in the modu-
lation of central immune function[33] and neuroinflammation-
associated diseases[34–36].  

Brain CB2R distribution and function
Although both CB1Rs and CB2Rs are G-protein (Gi/o)-coupled 
receptors, they exhibit different distributions.  In general, the 

CB1Rs are mainly expressed in GABAergic neuronal axon ter-
minals, including in VTA GABA neurons[37, 38] and hippocam-
pal CCK-positive GABA neurons[39].  The activation of CB1Rs 
reduces presynaptic GABA release, eliminates GABAergic 
inhibitory control of postsynaptic neurons, and excites these 
postsynaptic neurons through this dis-inhibition role.  How-
ever, the CB2Rs are mainly expressed in the postsynaptic cell 
body[11, 17]; thus, the activation of these postsynaptic CB2Rs 
usually hyperpolarizes the membrane potential and inhibits 
postsynaptic neuronal function.  Therefore, this difference in 
distribution results in opposite effects after CB1R and CB2R 
activation.  Activation of CB2Rs reduces neuronal excitability 
through different mechanisms.  In VTA DA neurons, activa-
tion of CB2Rs decreases neuronal excitability through the 
CB2R-associated modulation of K+ channel function[11].  In 
prefrontal cortical neurons, intracellular CB2Rs are coupled to 
the Gq11-PLC-IP3 pathway, which opens the Ca2+-dependent 
Cl- channels, hyperpolarizes the cell membrane and results in 
neuronal inhibition[40].  In hippocampal CA3/CA2 pyramidal 
neurons, activation of CB2Rs triggers activation of the Na+/
Bicarbonate co-transporter and causes a long-term neuronal 
hyperpolarization.  This CB2R activation occurs in a purely 
self-regulatory manner, robustly alters the input/output 
function of CA3 pyramidal cells, and modulates gamma oscil-
lations in vivo[17].  The relatively high expression of CB2Rs in 
midbrain DA neurons suggests that they modulate a variety 
of important DA-associated behaviors[41].  It has been reported 
that CB2Rs modulate food intake, body weight[42–45], depres-
sion[46], anxiety[22, 47], and schizophrenia-like behavior[23, 48].  
Recent reports emerging from several labs, including ours, 
have shown that brain CB2Rs play a pivotal role in reducing 
cocaine, alcohol, and nicotine addiction[49–51].  Collectively, 
these lines of evidence strongly suggest an important impact 
of CB2Rs in the mesocorticolimbic system, as well as critical 
roles of CB2Rs in various brain functions, including psychiat-
ric, cognitive, and neurobiological activity.  

Inducible feature of brain CB2Rs and their modulation in 
neurological and psychiatric disorders
The most attractive property of the CB2R is its inducible fea-
ture.  Brain CB2Rs are expressed at low levels under physi-
ological conditions; however, in pathological conditions, such 
as neuropathic pain[52], stroke[53], traumatic brain injury[54], 
neurodegenerative diseases[55–57] or drug addiction[58, 59], CB2R 
expression up-regulates quickly and profoundly.  This induc-
ible feature lets CB2Rs serve as a disease-associated target, 
and pharmacotherapeutic manipulation of CB2Rs can treat 
diseases without side effects.  For example, the mesocortico-
limbic DA system is a key brain circuit implicated in a num-
ber of drug addictions.  Alterations of the mesocorticolimbic 
DA circuit are the major cellular mechanisms to promote or 
prevent drug reward, dependence, and addiction.  Emerg-
ing evidence has demonstrated that CB2Rs modulate animal 
drug-seeking behaviors, including cocaine, alcohol, and nico-
tine[49–51], suggesting a significant impact of brain CB2Rs in 
animal drug reward, dependence, and addiction.  Given the 
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lack of psychoactivity demonstrated by selective CB2R ago-
nists, CB2R ligands have been developed as new candidates 
for the treatment of a variety of neurological and psychiatric 
disorders[13, 60, 61], including pain[62–65], neuroinflammation[66], 
stroke[67, 68], Alzheimer’s disease[69], Parkinson’s disease, and 
Huntington’s disease[36, 70-75].  Three medicines that activate can-
nabinoid CB1/CB2 receptors are now used in clinics: Cesamet 
(nabilone), Marinol (dronabinol; ∆9-tetrahydrocannabinol [∆9-
THC]), and Sativex (∆9-THC with cannabidiol).  Additionally, 
a selective CB2R agonist “Resunab™” has been designated 
by the FDA for a fast-track development program in a Phase 
II human clinical trial for scleroderma. However, significant 
attention is currently being directed at the possibility of devel-
oping medicines from compounds that can activate CB2Rs at 
doses that induce little or no CB1R activation.  Accumulating 
lines of evidence have demonstrated that many of the adverse 
effects induced by mixed CB1/CB2 receptor agonists result 
from CB1R rather than from CB2R activation and that CB2R-
selective agonists have a number of important potential thera-
peutic applications[60].  Therefore, we anticipate the emergence 
of new drugs that modulate CB2Rs once a better understand-
ing of the cannabinoid receptors is gained.  

Limitation of brain CB2Rs as a therapeutic target
The major challenge of how to selectively target brain CB2Rs 
without affecting peripheral CB2Rs remains, as CB2R levels 
are much higher in peripheral tissues (eg, T-cells in the spleen) 
than in the brain.  Thus, systemic exposure of CB2R ligands 
to activate brain CB2Rs will always activate peripheral CB2Rs.  
We have two thoughts regarding this challenge: 1) Brain CB2Rs 
are dramatically inducible, meaning they are up-regulated 
during disease conditions such as addiction, degeneration and 
inflammation.  This pathology-associated increase significantly 
enhances the benefit to side-effect ratio[76].  2) Activation of 
brain CB2Rs protects neurons from pathological conditions (eg, 
addiction, anxiety, stroke, epilepsy, pain) while also activating 
peripheral CB2Rs (eg, T-cells), which may cause side effects in 
addition to central therapeutic effects.  However, peripheral 
CB2R activation will reduce the immune response and prevent 
an over-inflammatory reaction, which are beneficial for cen-
tral protective effects.  Therefore, the activation of peripheral 
CB2Rs may not always induce side effects when brain CB2Rs 
are activated, but rather, both central and peripheral CB2Rs 
may work together to protect brain neurons from pathological 
alterations through both neuronal and immune mechanisms.  
Figure 1 shows a diagram of the impact of brain CB2R distri-
bution, function and disease.
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