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Targeted exosome-mediated 
delivery of opioid receptor Mu 
siRNA for the treatment of 
morphine relapse
Yuchen Liu*, Dameng Li*, Zhengya Liu*, Yu Zhou, Danping Chu, Xihan Li, Xiaohong Jiang, 
Dongxia Hou, Xi Chen, Yuda Chen, Zhanzhao Yang, Ling Jin, Waner Jiang, Chenfei Tian, 
Geyu Zhou, Ke Zen, Junfeng Zhang, Yujing Zhang, Jing Li & Chen-Yu Zhang

Cell-derived exosomes have been demonstrated to be efficient carriers of small RNAs to neighbouring 
or distant cells, highlighting the preponderance of exosomes as carriers for gene therapy over 
other artificial delivery tools. In the present study, we employed modified exosomes expressing the 
neuron-specific rabies viral glycoprotein (RVG) peptide on the membrane surface to deliver opioid 
receptor mu (MOR) siRNA into the brain to treat morphine addiction. We found that MOR siRNA 
could be efficiently packaged into RVG exosomes and was associated with argonaute 2 (AGO2) in 
exosomes. These exosomes efficiently and specifically delivered MOR siRNA into Neuro2A cells and 
the mouse brain. Functionally, siRNA-loaded RVG exosomes significantly reduced MOR mRNA and 
protein levels. Surprisingly, MOR siRNA delivered by the RVG exosomes strongly inhibited morphine 
relapse via the down-regulation of MOR expression levels. In conclusion, our results demonstrate 
that targeted RVG exosomes can efficiently transfer siRNA to the central nervous system and 
mediate the treatment of morphine relapse by down-regulating MOR expression levels. Our study 
provides a brand new strategy to treat drug relapse and diseases of the central nervous system.

RNA interference (RNAi) refers to guide sequence-dependent gene silencing mediated by either the 
degradation or translation arrest of target RNAs1. The discovery of small-interfering RNA (siRNA) as 
a mediator of RNAi in mammalian cells rapidly brought RNAi to the forefront as a promising tool for 
therapeutic applications in cancers and other diseases2,3. The delivery of siRNA remains a challenging 
task, and tissue-specific delivery of siRNA will bring RNAi therapy more clinic al value. Thus, finding 
an effective siRNA delivery tool for therapeutic administration in vivo is a problem that urgently needs 
to be addressed. Three types of delivery vehicle have been used for siRNA delivery, including viruses, 
polycationic polyethylenimine (PEI)-based nanoparticles and liposomes4–7. Nonetheless, there are still 
some disadvantages with each method, including immune activation, toxicity problems and non-specific 
targeting1–3. Thus, an efficient, tissue-specific and non-immunogenic delivery tool must be developed.

Microvesicles (MVs), with diameters ranging from 30 to 1000 nm, are secreted from almost all cell types 
under both physiological and pathological conditions4,5. MVs can be divided into two types: exosomes 
and shedding vesicles5. MVs released from cells have been shown to contain non-coding RNAs, which 
can be transferred to neighbouring or distant cells to regulate the gene expression of recipient cells6. Our 
previous study demonstrated that MVs could be utilised as a delivery vehicle to transport therapeutic 
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siRNA or anti-sense microRNA for tumour therapy, indicating the potential of MVs as a tool for tumour 
treatment7–9. However, the utilisation of MV-delivered siRNA for the treatment of other diseases has not 
been explored. MVs can also be engineered to express specific ligands on the membrane surface; these 
artificially modified MVs can then enter into specific tissues. Lydia et al. acquired targeted exosomes by 
engineering the exosomes from dendritic cells to express the neuron-specific rabies viral glycoprotein 
(RVG) peptide, which binds to the acetylcholine receptor expressed on neuronal cells, to allow these 
exosomes to efficiently pass through the blood-brain barrier (BBB)10. Thus, the RVG-modified exosomes 
allow for the delivery siRNA into the brain.

In the current study, we utilised RVG exosomes loaded with opioid receptor Mu (MOR) siRNA to 
treat drug addiction via down-regulating the expression of MOR, which is the primary target for opioid 
analgesics used clinically, including morphine, fentanyl and methadone, and is involved in the primary 
reinforcing effects of and the addiction to opiates. Here, we selected the human embryonic kidney 293T 
(HEK 293T) cell line and co-transfected the cells with an RVG peptide-expressing plasmid and MOR 
siRNA to acquire RVG exosomes loaded with MOR siRNA. Moreover, we analysed MOR expression 
levels in vitro and in vivo and morphine relapse in mice. Our study provides a brand new strategy for 
treating drug addiction.

Results
Characterisation of RVG exosomes and the packaging of MOR siRNA into RVG exosomes.  
The effects of many neuropharmaceuticals are diminished by the presence of the BBB. So far, there is no 
solid evidence that exosomes can pass through the BBB to enter the brain. To acquire modified exosomes 
that can pass through the BBB, we established neuron-specific exosomes according to a previous pub-
lication10. First, the RVG peptide was cloned into Lamp2b, a protein expressed abundantly in exosomal 
membranes. Then, the plasmids encoding RVG and MOR siRNA were simultaneously transfected into 
HEK 293T cells for 48 hr before exosomes were collected (Fig.  1A). Isolated exosomes were charac-
terized using transmission electron microscopy (TEM) and NTA. The TEM photographs showed that 
the exosomes presented normal morphological characteristics, with a diameter of approximately 90 nm, 
and that each vesicle was surrounded by a double-layer membrane; the NTA results showed that the 
diameter of majority of particles are 85 nm. These characteristics indicate that the exosome properties 
were not affected by the modifications (Fig.  1B,C). To identify the interference efficiency of the MOR 
siRNA, the mouse neuroblastoma cell line (Neuro2A) was transfected with MOR siRNA via liposomes, 
resulting in a great reduction of MOR mRNA (supplementary Fig. 1A). The three MOR siRNAs have 
the same interference, thus, we select siRNA-1 and siRNA-2 for the next experiment. Next, the levels of 
MOR siRNA in isolated exosomes were assayed by a LNA primer-based quantitative RT-PCR assay. The 
serially diluted MOR siRNAs were assessed using the qRT-PCR assay to generate a standard curve. The 
siRNA had a Pearson correlation coefficient (R) > 0.99 (supplementary Fig. 1B). The linear range of the 
CT value was from 16.86 to 29.32, and the corresponding quantification range of the expression level was 
from 10 amol to 100 fmol (supplementary Fig. 1B and Table 1). The siRNAs concentration in exosomes 
was calculated based on reference to the standard curve and is linearly and positively correlated with the 
total number (shown as total protein) of exosomes (Fig. 1D). In vehicle and RVG-exosome loaded with 
scramble RNA (ncRNAs), the CT values of siRNAs (quantified using MOR siRNAs probe) were outside 
the linear range, thus, this CT values were the background values of qRT-PCR assay and the siRNAs in 
these exosome were undetected. The final concentration of siRNA in exosome loaded with them were 
approximately 0.14 pmol/μ g (Fig.  1E). The results clearly showed that MOR siRNA can be effectively 
packaged into exosomes.

MOR siRNA is associated with AGO2 in RVG exosomes. Previous publications showed that 
miRNA and siRNA in exosomes were combined with the argonaute 2 (AGO2) complex7. Thus, we next 
determined whether MOR siRNA was associated with AGO2 in RVG-exosomes. The association of MOR 
siRNA with AGO2 was detected by AGO2 immunoprecipitation using an anti-AGO2 or anti-IgG anti-
body, followed by analysis of the MOR siRNAs. The result showed that the majority of the MOR siRNA 
was associated with AGO2 (Fig. 1F). Taken together, these results demonstrate that MOR siRNA can be 
effectively packaged into RVG exosomes and is associated with AGO2 in RVG exosomes.

RVG exosomes can specifically deliver siRNA into Neuro2A cells and reduce MOR expression 
levels in the recipient cells. To determine whether RVG exosomes can deliver small RNAs into 
cells, the Neuro2A cell line was selected as the recipient cell to incubate with exosomes loaded with or 
without Alexa Fluor 555 labelled oligonucleotide (show red colour). As shown in Fig. 2A, Neuro2A cells 
treated with RVG exosomes loaded with Alexa Fluor 555-labelled oligonucleotide (lane 4) were fluores-
cently labelled under fluorescence confocal microscopy. The fluorescent signals were not observed in 
cells untreated or treated with vehicle or non-RVG exosome (lane 1, 2 and 3). Interestingly, we found 
that RVG exosomes only entered neurocytes, which have the RVG peptide receptor on their membrane; 
these exosomes could not efficiently enter other non-neuronal cells such as the human skeletal muscle 
cell line (C2C12) (Fig.  2A lane 5 and 6). Subsequently, MOR siRNA levels were assayed in recipient 
cells. siRNAs were detected in Neuro2A cells after treatment with RVG exosomes loaded with MOR 
siRNA (siRNA-RVG exosomes). The siRNAs concentrations were barely detected in Neuro2A treated 
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with siRNAs in normal exosome. Similarly, the siRNAs barely detected in C2C12 cells treated with 
RVG-exosome (Fig.  2B). Consistently, MOR mRNA and protein levels were dramatically reduced by 
RVG exosome-delivered siRNA (siRNA-RVG exosomes), while no reduction in the MOR mRNA and 
protein levels were observed with the exosomes without the RVG peptide (siRNA exosomes) (Fig. 2C–E). 
Scramble RNAs (ncRNAs) delivered by RVG-exosome also could not reduce MOR mRNA and protein 
levels, suggesting that the reduction of target gene was mediated by siRNAs (Fig. 2C–E). To confirm the 
effect of MOR siRNAs loaded RVG-exosome in vitro, a second siRNA (siRNA-2) was used. As shown 
in Supplementary Figure 2A and 2B, siRNA-2 encapsulated in RVG-exosome also could reduce MOR 
expression level. Together, these results clearly demonstrate that the RVG peptide modification on the 
exosome membrane specifically guides exosomes to target cells bearing the RVG peptide receptor, allow-
ing for the efficient delivery of MOR siRNA into the recipient cells to regulate MOR gene expression.

RVG exosomes can transfer siRNAs through the BBB and reduce MOR expression levels. To 
verify whether siRNA delivered via RVG exosomes can pass through the BBB and regulate MOR expres-
sion, we performed an in vivo assay. Mice were injected once intravenously with siRNA-RVG exosomes, 
and the siRNA levels in the brain were assayed after 24 hours. The result showed that 200 μ g exosomes 
per mouse produced the greatest elevation in siRNA levels in the brain; thus, a 200 μ g dose was chosen 

Figure 1. (A) Schematic diagram of the production and harvest of RVG-modified exosomes for siRNA 
delivery. (B) TEM micrographs of RVG exosomes isolated from the culture medium of 293T cells. (C) 
Exosomes were measured by using Nanosight NS 300 system in the supernatant from cultures cells. The 
histogram represents particle size distribution. (D) qRT-PCR analysis of siRNA levels in various quantities of 
exosomes. *P < 0.05; **P < 0.01. (E) qRT-PCR analysis of MOR siRNA levels in various exosomes. (F) qRT-
PCR analysis of MOR siRNA levels in anti-AGO2 or anti anti-IgG immunoprecipitated products from RVG 
exosomes treated with or without AGO2 antibody. RVG-modified exosomes with or without siRNA were 
isolated from 293T culture medium and immunoprecipitated with or without anti-AGO2 antibody. Then, 
MOR siRNA levels in immunoprecipitated products from RVG exosomes were assayed by qRT-PCR.
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for the following experiments (Fig. 3A). siRNAs were detected in the mice plasma injected with siRNAs 
loaded in normal exosomes or RVG exosomes (Fig.  3B) and the final siRNA concentration in plasma 
was determined as 3.89 fmol/μ l (supplementary table 1). Interestingly, only RVG exosomes could delivery 
siRNAs into brain and significantly reduce MOR mRNA and protein levels (Fig.  3C–F). And the final 
concentration of siRNAs in brain tissue was determined as 18.82 pmol/g (supplementary table 1). To 
assay the MOR siRNAs distribution in the brain, we sub-dissect the brain into cortex, hippocampus, 
thalamus, hypothalamus, striatum. MOR siRNAs were detectable in all these regions and have a highest 
level in the cortex, where MOR are majorly expressed and regulates the opioid addiction. (Supplementary 
Fig. 3A). Scramble RNAs (ncRNAs) delivered by RVG exosome could not reduce MOR mRNA and 

Figure 2. RVG exosome-delivered siRNA can enter Neuro2A cells and reduce MOR expression levels. 
(A) Confocal microscopy images of fluorescently labelled oligonucleotides in Neuro2A cells and C2C12 
cells, untreated (lane 1 and 5) or incubated with empty exosome (lane 2), normal exosomes loaded with 
siRNA (lane 3) or RVG exosomes loaded with siRNA (lane 4 and 6). (B) qRT-PCR analysis of MOR siRNA 
concentration in Neuro2A cells and C2C12 cells untreated or treated with siRNAs in normal exosome, 
scramble RNAs in RVG exosome or siRNA in RVG exosome. (C) qRT-PCR analysis of MOR mRNA levels 
in Neuro2A cells treated as described in (B). (D) Western blot analysis of MOR protein levels of Neuro2A 
cells treated as described in (B). (E) Quantification of the MOR protein levels in (A). *P <  0.05; **P <  0.01.
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protein levels, suggesting that the reduction of target gene was mediated by siRNAs (Fig. 3D–F). To fur-
ther confirm the effect of MOR siRNAs loaded in RVG-exosome in vivo, a second siRNA (siRNA-2) was 
used. As shown in Supplementary Figure 3B and 3C, injection of siRNA-2 encapsulated in RVG-exosome 
could also reduce MOR expression level in the brain. Taken together, these results clearly demonstrate 
that exosomes with RVG modification passed through the BBB and delivered siRNA into the central 
nervous system to regulate gene expression, while natural exosomes without the RVG modification were 
not capable of delivering siRNA into the central nervous system or regulating target gene expression.

The effects of siRNA delivered by RVG exosomes on morphine-induced CPP. We then investi-
gated the consequences of MOR down-regulation in the animals by conducting the conditioned position 
preference (CPP) test. MOR and its signalling pathway are known to be involved in drug relapse of opi-
ates such as morphine and heroin. Importantly, relapse always disrupts the process of drug withdrawal. 
Thus, our current study focused on the influence of MOR siRNA on drug relapse. In the CPP paradigm, 
mice learned to associate the rewarding effect of morphine with a drug-paired environment. The CPP 
test was performed as depicted in Fig. 4A. Before conditioning, the mice showed a preference for visiting 
black chamber. Then, morphine dependence was developed by i.p. injection of morphine, given every 
other day for a total of 5 times. Mice were place-conditioned by i.p. injection with morphine in the 
white chamber on even-numbered days (on days 2, 4, 6, 8, 10) and with saline in the black chamber on 
odd-numbered days (on days 3, 5, 7, 9, 11). Each injection was performed 5 times. On day 12, CPP test 1  
was conducted by allowing the mice to freely visit the morphine- and saline-paired chambers; mice 
showed a significant preference in visiting the morphine-paired chamber, suggesting the development 
of morphine dependence. Then, morphine and saline treatments were removed for several days. On 
day 26, CPP test 2 was conducted and mice spent less time in the morphine-paired chamber than the 
saline-paired chamber, suggesting the disappearance of morphine dependence. Then, mice were treated 

Figure 3. siRNA-RVG exosomes reduced MOR levels in mice. (A) qRT-PCR analysis of MOR siRNA 
levels in the brains of mice following injection with various quantities of exosome. (B) qRT-PCR analysis 
of MOR siRNA concentration in the plasma of mice untreated or treated with empty exosomes, siRNAs in 
normal exosome, scramble RNAs in RVG exosome or siRNAs in RVG exosome. (C) qRT-PCR analysis of 
MOR siRNA concentration in the brains of mice following intravenous injection as described in (B). (D) 
qRT-PCR analysis of MOR mRNA levels in the brains of mice treatment as described in (B). (E) Western 
blot analysis of MOR protein levels in the brains of mice treated as described in (B). (F) Quantification of 
the MOR protein levels in (B). n =  7, *P <  0.05; **P <  0.01.
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with the various exosomes intravenously once every two days for a total of 4 times. Then, CPP test 3 
was performed on day 32. Mice still showed a natural preference for the black chamber, suggesting that 
MOR siRNA had no effect on the behaviour of the mice. Then, mice were relapsed on morphine on  
day 33; CPP test 4 was performed the next day. Interestingly, the mice treated with RVG exosome-delivered 
siRNAs (siRNA-RVG exosomes) still showed a natural preference for the black chamber, while the mice 
treated with saline, siRNAs loaded in normal exosome or ncRNA in RVG exosome show preference 
to drug-paired chamber, suggesting that the MOR siRNAs delivered by RVG exosome restrain drug 
addiction when the mice were re-exposed to morphine (Fig. 4B). A second siRNA (siRNA-2) was used 
to further confirm the effect of MOR siRNAs loaded in RVG-exosome on morphine-induced CPP. 
The results showed that siRNA-2 packaged in RVG-exosome could also restrain the morphine relapse 
(Supplementary Fig. 4).

Discussion
Exosome research has recently gained attention. Our previous study demonstrated that exosomes are 
functional vesicles that contain post-transcriptional RNA (miRNA) and mediate cell-to-cell commu-
nication via their miRNA content6,11. The following study further demonstrated that exogenous siRNA 
transfected into cells could also be packaged by exosomes and delivered into recipient cells to regulates 
gene silencing, indicating that exosomes can serve as siRNA delivery vesicles in gene therapy for cancer 
and other diseases12–14. The development of tissue-specific delivery vesicles represents great progress 
in gene therapy. Thus, upon learning of exosomes expressing the neuron-targeting RVG peptide on 
their surface, we wanted to utilise this targeted exosome to solve medical problems in the brain. Drug 
addiction poses serious social, medical, and economic issues, but effective treatments for drug addiction 
remain limited15,16. Thus, we proposed the bold strategy of using RVG exosomes to deliver siRNA into 
the brain to treat drug addiction. MOR is a major target of opioid drugs and appears to play critical 
roles in mediating the major effects of opioid drugs, including analgesia, tolerance, abuse, dependence 
and respiratory depression17. It has been reported that the rewarding effect of morphine, mediated by 
MOR, is abolished in MOR-deficient mice and that an MOR antagonist diminished the consequences of 
an initial opioid drug relapse18. Thus, the MOR gene was selected as a target for the treatment of drug 
addiction. Here, according to method described in our previous publication10, we constructed a plasmid 
expressing the neuron-targeting peptide RVG and employed HEK 293T cells as donor cells to acquire 
exosomes expressing RVG on the surface. One of two methods, electroporation or transfection, is com-
monly used to load exosomes/MVs with exogenous siRNA. The process of donor cell transfection for 
loading therapeutic cargo into exosomes is generally more effective than direct electroporation. In the 
current study, we demonstrated that the second method has a very high efficiency for siRNA loading; 
approximately 1% of the siRNA in the donor cells could be packaged into exosomes, which is a much 
higher than that of electroporation. The exosomes showed normal morphological characteristics after 

Figure 4. The effects of siRNA-RVG exosomes on morphine-induced CPP. (A) A flow chart depicting the 
experimental design is shown. (B) Analysis of the morphine-reduced CPP of mice treated with saline, empty 
exosomes, scramble RNAs in RVG exosomes or siRNAs RVG exosomes. n =  7, *P <  0.05; **P <  0.01.
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modification and siRNA loading were conducted. Argonaute proteins are the central protein component 
of RNA-induced silencing complexes (RISCs); it has been reported that only the siRNAs associated with 
AGO2 are functional and stable19. In the current study, we demonstrated that siRNAs were combined 
with AGO2 in RVG-modified exosomes, indicating that these siRNAs were functional and stable.

According to the previous study, the RVG peptide could mediate exosome transfer through the BBB 
via binding to the acetylcholine receptor. Our study confirmed that RVG exosomes bearing MOR siRNA 
could effectively enter cells expressing the acetylcholine receptor on their membranes, resulting in a great 
reduction in the mRNA and protein levels of the target gene in vitro. Interestingly, RVG exosomes could 
not effectively enter cells lacking the acetylcholine receptor and did not reduce the MOR mRNA and pro-
tein levels in these cells, further demonstrating that RVG exosomes represent a class of vesicles that can 
specifically and effectively enter neurons that express the acetylcholine receptor. The animal experiments 
demonstrated that RVG exosomes bearing MOR siRNA could pass through the BBB, enter the brain and 
significantly decrease MOR gene expression levels. In addition, the CPP test was conducted to determine 
the effect of siRNA delivered via RVG exosomes on drug relapse. Surprisingly, the results showed that 
MOR down-regulation by RVG exosome-delivered siRNA clearly blocked the morphine-induced CPP 
after re-exposure to morphine, indicating that the siRNA prevented morphine relapse. On the contrary, 
RVG exosomes loaded with siRNA had no effect on the natural preference of the mice not treated with 
morphine. Notably, siRNA may serve as a more effective treatment for drug addiction compared with 
other options such as naltrexone and methadone.

Great progress has been made in finding the perfect delivery vesicles for gene therapy. Exosomes are 
thought to have unequivocal advantages compared with traditional delivery systems such as liposomes, 
viruses and nanoparticles because of their non-toxicity and non-immunogenicity. In this study, we uti-
lised brain-specific targeted exosomes to solve a pathological problem in the central nervous system 
(CNS) and demonstrated that exosomes have the potential to serve clinically as a gene therapy strategy 
for the transfer of siRNA across the blood brain barrier.

Materials and Methods
Cell lines and reagents. The human embryonic kidney 293T, mouse skeletal muscle C2C12 and 
mouse Neuro2A cell lines were purchased from the Institute of Biochemistry and Cell Biology, Shanghai 
Institutes for Biological Science, Chinese Academy of Sciences (Shanghai, China). Both cell lines were 
cultured in high-glucose DMEM medium, supplemented with 10% FBS (Gibco, CA, USA) and penicil-
lin (100 U/ml)/streptomycin (100 mg/ml), at 37 °C in 5% CO2. Anti-MOR, anti-GAPDH and anti-IgG 
antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA), and an anti-Ago2 
antibody was purchased from Abcam (Cambridge, MA, USA).

Transfection and preparation of exosomes. The MOR siRNA oligonucleotides were synthesised  
by Invitrogen. The sequences of the siRNAs duplex are siRNA-1: sense 5′ -3′  ACUUCCUCCACAAUCG 
AACAGCAAA; antisense, antisense 5′ -3′  UUUGCUGUUCGAUUGUGGAGGAAGU; siRNA-2: sense 
5′ -3′  GUCAUGUAUGUGAUUGUAAGAUA, antisense 5′ -3′  UAUCUUACAAUCACAUACAUGAC; 
siRNA-3: sense 5′ -3′  GCAAGAUCGUGAUCUCAAUAGACUA, antisense 5′ -3′  UAGUCUAUUGAG 
AUCACGAUCUUGC. As previously described10, the targeting peptide RVG was cloned into Lamp2b, 
a protein that is abundantly expressed on the exosome membrane surface. 293T cells were seeded in 
225-cm2 flasks (Corning). When the cells reached approximately 70–80% confluence, they were cotrans-
fected with siRNA and the RVG-Lamp2b plasmid using Lipofectamine 2000 (Invitrogen) according to 
the manufacturer’s instructions. The cell culture medium was then harvested 48 h after transfection, 
and exosomes were isolated from the medium using an exosome isolation kit (Invitrogen) according 
to the manufacturer’s instructions. The resulting pellet was then resuspended in saline. Alexa Fluor 555 
fluorescence-labelled siRNA oligonucleotides was purchased from Invitrogen. 293T cells were transfected 
with the labelled siRNA and exosomes loaded with fluorescence-labelled siRNA were harvested as above 
described. Neuro2A and C2C12 cells were transfected MOR plasmid using lipofectamine 2000 to expres-
sion MOR as above described.

Transmission electron microscopy assay. For the TEM assay, the exosome samples were prepared 
as above described. Briefly, the exosome pellet was placed in a droplet of 2.5% glutaraldehyde in PBS 
buffer and fixed overnight at 4 °C. The exosome samples were rinsed 3 times in PBS for 10 min each and 
then fixed in 1% osmium tetroxide for 60 min at room temperature. Then, the samples were embedded 
in 10% gelatine, fixed in glutaraldehyde at 4 °C and cut into small blocks (less than 1 mm3). The samples 
were dehydrated in increasing concentrations of alcohol. Then, the samples were placed in propylene 
oxide and infiltrated with increasing concentrations of Quetol-812 epoxy resin mixed with propylene 
oxide for 3 h per step. Finally, the samples were embedded in pure, fresh Quetol-812 epoxy resin and 
polymerised at 35 °C for 12 h, 45 °C for 12 h, and 60 °C for 24 h. Ultrathin sections were cut using a Leica 
UC6 ultra-microtome and stained with uranyl acetate for 10 min and lead citrate for 5 min at room 
temperature. The samples were then observed with a transmission electron microscope (JEM-1010) at 
a voltage of 80 kV.
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NTA. NTA was carried out using the Nanosight NS 300 system (NanoSight) on exosomes resuspended 
in saline at a concentration of 5 μ g of protein/ml and were further diluted from 100- to 500-hundredfold 
for analysis. The system focuses a laser beam through a suspension of the particle of interest. The results 
are visualized by light scattering.

Confocal microscopy analysis. Exosomes (100 μ g exosome for 106 cells) loaded with or without 
fluorescence-labelled siRNA were incubated with the Neuro2A cells. After 6 hours, the cells were washed, 
fixed and observed under a confocal microscope (FV 1000; Olympus, Tokyo). Pictures were taken under 
the following conditions: objective lens: PLAPON 60 ×  O; NA: 1.42; scan mode: XY; excitation wave-
length: 405 nm for hoechst 33342 and 555 nm for Alexa Fluor 555; and image size: 1024 ×  1024 pixels.

Co-immunoprecipitation. Co-immunoprecipitation assays were performed according to the manu-
facturer’s instructions. Briefly, cells were washed three times with cold PBS (4 °C), scraped from each dish 
and then collected by centrifugation at 1000 rpm for 5 min at 4 °C). Cells were then re-suspended in an 
appropriate volume of complete lysis buffer. Mouse monoclonal anti-AGO2 antibody (2 μ g) was used to 
immunoprecipitate RNA-binding proteins. After purification, immunoprecipitated RNA was analyzed by 
real-time RT-PCR for MOR siRNA using custom LNA siRNA primer (Exiqon, Denmark).

Exosome incubation with cells. Exosomes (100 μ g exosome for 106 cells) loaded without or with 
MOR siRNAs, scramble RNAs were incubated with Neuro2A or C2C12 cells which were prior expressed 
MOR as described in 2.3. After 24 hour incubation, the recipient cells were collected for the following 
analysis.

RNA isolation, quantitative RT-PCR and calculation. Total RNA from cell and tissue was 
extracted using TRIzol Reagent (Invitrogen) according to the manufacturer’s instructions. Total RNA 
from plasma was extracted using the miRneasy mini kit (Qiagen, Valencia, CA, USA). Quantitative 
RT-PCR of mature miRNA was performed on an ABI7500 (Applied Biosystems; Foster City, CA) instru-
ment using the custom LNA siRNA primer (Exiqon) according to the manufacturer’s instructions. Briefly, 
2 μ l (plasma) or 10 ng (brain tissue) of total RNA was reverse-transcribed to cDNA using universal cDNA 
synthesis kit (Exiqon) and 4 μ l cDNA (80 times diluted) was used for Real-time PCR using ExiLENT 
SYBR Green master mix kit. After the reaction, the cycle threshold (CT) values were determined using 
the threshold setting. To calculate the expression levels of the target siRNAs, a series of siRNA oligo-
nucleotides at known concentrations in water were also reverse-transcribed and amplified to generate 
a stand curve. The quantification of siRNA was then calculated by referring to the standard curve20. 
The siRNA concentration in brain tissue was normalized to U6 RNA. Based on the calculations of the 
concentrations of siRNA in plasma, exosome and brain tissue, the final amount of siRNA were deter-
mined. Quantitative RT-PCR of MOR expression was also performed on an ABI7500 with primers pur-
chased from Invitrogen. The primers used were as follows: MOR-1: 5′ -GCCTTAGCCACTAGCACG-3′  
(forward primer) and 5′ -AACATTACGGGCAGACCA-3′  (reverse primer); and GAPDH: 
5′ -CGAAGGTGGAAGAGTGGGAG-3′  (forward primer) and 5′ -TGAAGCAGGCATCTGAGGG-3′  
(reverse primer).

Western blots and antibodies. Tissues and cells were lysed in RIPA lysis buffer. MOR-1 protein lev-
els were quantified by Western blot analysis using antibodies against MOR-1 (Santa Cruz). Normalisation 
was conducted by blotting the same samples with an antibody against GAPDH (Santa Cruz).

Animals. C57BL/6J (male, 8-week-old) mice were purchased from the Model Animal Research Centre 
(MARC) of Nanjing University (Nanjing, China) and were maintained in pathogen-free conditions. The 
animals received humane care according to the guidelines prepared by the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals and approved by the Institutional Review Board of 
Nanjing University, Nanjing, China. Mice were intravenously injected with 200 μ g exosomes for once. 
After 6 hours, plasma siRNAs levels were assayed, and after 24 hours, siRNAs, MOR mRNA and protein 
levels were assayed in the brain tissue.

Conditioned place preference (CPP) test. A two-chamber CPP apparatus (Yishu Software 
Technology Co. Ltd., Shanghai, China) was used in this study. The two chambers were identical in size 
but differed in colour and floor texture. The two distinct chambers were linked by a smaller intermediate 
compartment with a shutter on each side that allowed for control of access to either side of the chamber. 
One chamber had white walls with a barred floor and was illuminated, while the other had black walls 
with a dotted floor and was not illuminated.

Pre-conditioning. (Day 1) Mice were allowed free access to both chambers for 30 min, and the number 
of crossings and the time spent in each chamber were recorded. As recommended by the manufacturer’s 
instructions, animals with fewer than 20 crossings or less than 300 s spent in one chamber were excluded.
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Conditioning. (Days 2–11) On days 2, 4, 6, 8 and 10, all mice received a morphine hydrochloride injec-
tion (10 mg/kg, i.p; Northeast Pharmaceutical group, Shenyang NO. 1 Pharmaceutical CO., LTD, China) 
before being placed in the white chamber for 30 min. On days 3, 5, 7, 9 and 11, all mice received a saline 
injection (10 ml/kg, i.p.) before being placed in the black chamber for 30 min. On day 12, all mice were 
allowed free access to both chambers for 30 min for the CPP test.

Extinction. (Days 13–25) All mice were kept in their cages and were maintained in pathogen-free 
conditions.

Exosome injection. (Days 26–32) Before exosome injection, all mice underwent a CPP test. Mice were 
divided into three groups: saline (n =  7), siRNA exosome (n =  7), ncRNA-RVG exosome and siRNA-RVG 
exosome (n =  7). On days 26, 28, 30 and 32, mice were injected intravenously with 200 μ g exosomes 
loaded with or without siRNAs respectively, and the control group was injected intravenously with equiv-
alent doses of saline.

Reinstatement. (Days 33–34) On day 33, before being placed in the white chamber for 30 min, all mice 
received morphine (10 mg/kg, i.p.). On day 34, all mice underwent a 30 min CPP test.

Statistical analysis. Statistical analysis was performed using the t-test. Data are presented as the 
means ±  SEMs of at least three independent experiments. Differences were considered statistically sig-
nificant at P <  0.05.
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