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Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of

the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with

cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that

requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of

the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial

learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was

associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic

memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal

cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards

earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an

MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found

additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in

humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.
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INTRODUCTION

The compulsive, habitual, and inflexible drug use that
characterizes Cocaine Dependence (CD) is functionally
disabling and difficult to treat. Preclinical studies have
identified cocaine-associated adaptations in neural systems
that support reward processing and habit learning, which in
turn are associated with the compulsive use of cocaine
(Everitt et al, 2008; Kalivas and O’brien, 2008). These neural
adaptations support cocaine’s role as a powerful behavioral
reinforcer and cocaine-related cues as triggers for compul-
sive drug seeking-behaviors that often lead to relapse
(Kosten et al, 2005; Martinez et al, 2007). Accordingly,
addiction is conceptualized as a disorder of learning
wherein the transition from casual to habitual cocaine use

is associated with progressive adaptations in corticostriatal
circuits that strengthen stimulus-response learning and
erode the episodic memory processes that support flexible,
goal-directed behaviors (Hyman et al, 2006; Kalivas and
O’brien, 2008). Performance deficits on behavioral tasks of
episodic memory predict poor treatment outcomes in
individuals who use cocaine (Aharonovich et al, 2006;
Fals-Stewart and Schafer, 1992; Fox et al, 2009; Turner et al,
2009). Thus, intact episodic memory may be required to
support the cognitive effort required in psychotherapies for
CD. Whereas functional disturbances in habit learning
systems are reported in substance use disorders (SUD)
(Chiu et al, 2008; Ersche et al, 2011; Ghahremani et al, 2011;
Park et al, 2010; Rose et al, 2012), the functioning of neural
systems for episodic memory have not been assessed in CD.
Additional disturbances in these systems would further
support the learning model of human addiction, point to a
putative mechanism of action for psychotherapies for CD,
and offer additional targets for treatment development.

Episodic memory requires the functioning of brain
structures in the Medial Temporal Lobe (MTL), including
hippocampus, parahippocampal gyrus, and entorhinal
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cortex (Burgess et al, 2002; Iaria et al, 2007; Marsh et al,
2010; Packard et al, 1989). Animal (Fole et al, 2011;
Krasnova et al, 2008; Tanaka et al, 2011; Thompson et al,
2004; Tropea et al, 2008) and human postmortem studies
(Mash et al, 2007; Meador-Woodruff et al, 1993; Zhou et al,
2011) have demonstrated that cocaine has wide-ranging
molecular and cellular effects on MTL. Although neuroima-
ging studies have not identified cocaine-associated changes
in hippocampus structure (Di Sclafani et al, 1998; Jacobsen
et al, 2001; Makris et al, 2004), the impairments in episodic
memory associated with cocaine use suggest that episodic
memory systems (including MTL structures) are likely
dysfunctional in CD.

Spatial learning is a form of episodic memory because it is
goal-directed, flexible, and requires encoding of relational
experiences (Eichenbaum and Cohen, 2001). Spatial learn-
ing in rodents is commonly assessed behaviorally using the
‘win-shift’ paradigm, which requires the use of spatial cues
to navigate an 8-arm radial maze to find hidden food
rewards. Like episodic memory, spatial learning in this
paradigm depends upon the anatomical and functional
integrity of MTL (Packard et al, 1989) and is sensitive to
cocaine exposure (Fole et al, 2011; Muriach et al, 2010;
Quirk et al, 2001). We adapted this spatial learning
paradigm for use with functional Magnetic Resonance
Imaging (fMRI) in humans (Marsh et al, 2010; Xu et al,
2012). Our previous use of this paradigm (Marsh et al, 2010)
validated its ability to probe spatial learning, providing
additional evidence for MTL activity during spatial learning
in humans (Adcock et al, 2006; Ito et al, 2008).

We used this fMRI task for reward-based spatial learning to
assess functioning of the neural system for episodic memory
in CD. We hypothesized that participants with CD would fail
to activate MTL and connected brain regions associated with
spatial learning and would instead engage other regions in
an effort to compensate for impaired MTL functioning. We
further explored associations with cocaine use in participants
with CD and group differences in the neural correlates of
processing reward outcomes during spatial learning.

METHODS AND MATERIALS

Human Subjects

MRI scans were acquired from 13 males with CD (see
Supplementary Materials) and 13 healthy males matched on
socio-demographic characteristics. Clinical interviews and
the Structured Clinical Interviews for DSM-IV-TR Axis I
disorders (Biometrics Research, New York State Psychiatric
Institute, New York) were conducted to ensure that
participants were free of major psychiatric, medical, and
neurological conditions (other than CD). For CD partici-
pants using other substances, cocaine was their primary
drug of choice. CD participants were abstinent at the time of
the scan. This study was approved by the Institutional
Review Board of the New York State Psychiatric Institute,
and informed consent was obtained from all participants.

Reward-Based Spatial Learning Paradigm

Our virtual reality (VR) assessment of reward-based spatial
learning has been previously described (Marsh et al, 2010; Xu

et al, 2012). The VR environment consisted of an 8-arm radial
maze that is surrounded by a naturalistic landscape that
provided extra-maze cues (eg, mountains, trees and flowers)
that could be used for spatial navigation (Supplementary
Figure S1). Prior to scanning, participants practiced navigat-
ing a similar VR maze on a desktop computer.

Stimuli during scanning were presented through non-
magnetic goggles. Participants used an MRI-compatible
joystick (Current Designs Inc.) to navigate the maze. Before
scanning, participants were informed that they will find
themselves in the center of a virtual maze with eight
identical arms extending outwards, and that hidden rewards
($) would be available at the end of the arms. They were
instructed to navigate the maze to collect the rewards and
that they could keep any money they found, but that
they would lose money if they revisited an arm. They were
told that they would complete several sessions of the task,
but not that the sessions would differ. They therefore
believed that they would be performing the task multiple
times.

The reward-based spatial learning paradigm consisted of
an active condition and a control condition. In the active
condition, all 8 arms were baited with rewards. As
participants navigated the maze, they had to learn the
spatial layout of the extra-maze cues to select novel arms
and avoid revisiting arms. After each arm visit (trial),
participants reappeared at the center of the maze with their
viewing perspective randomly reoriented to prevent use of
strategies such as chaining (systematically selecting neigh-
boring arms). After collecting all 8 rewards, the active
condition terminated.

Next, a screen indicated the beginning of new session. In
this control condition (described in detail in Supplementary
Materials), the identical extra-maze cues used in the active
condition were randomized among locations after each trial
to destroy any possibility of using the spatial layout of the
cues (spatial learning). To control for the reward frequency,
participants were rewarded at the same frequency as in the
active condition but without regard to their actual perfor-
mance. This control condition thus shared all salient
features with the active condition, including lower-order
stimulus features and higher-order task features. This
condition terminated following the number of trials that a
given participant needed to obtain all 8 rewards in the
active condition. If a participant required 18 trials to find all
8 rewards in the active condition (ie, 8 correct and 10 error
trials), they would be given 10 unbaited and 8 baited
trials randomly in the control condition. Thus, contrasting
neural activity in the active condition (during spatial
learning) and the control condition (where spatial learning
is impossible) reveals the neural correlates of reward-based
spatial learning.

Participants underwent 2 runs of each condition
(A-B-A-B sequence). The active condition always preceded
the control condition to establish the number of trials and
reward frequency for the control condition. Together, this
reward-based spatial learning paradigm contained 32
rewarded navigation events (8 rewards� 2 conditions� 2
runs), but the number of unrewarded events varied for each
participant. All participants earned the same amount of
money for participating in the experiment regardless of
performance.
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Image Acquisition and Processing

Images were acquired on a GE Signa 3 Tesla LX scanner
(Milwaukee, WI) with a standard quadrature GE head coil.
Axial functional images were positioned parallel to the anterior
commissure-posterior commissure line using a T1-weighted
sagittal localizing scan. Functional images were obtained using
a T2*-sensitive gradient-recalled, single-shot, echo-planar
pulse sequence having a TR¼ 2800 msec, TE¼ 25 msec, 901
flip angle, single excitation per image, 24� 24 cm FOV, a
64� 64 matrix, 43 slices 3 mm thick, no gap, and covering the
entire brain. The number of EPI volumes collected was
determined by the performance of each participant in the
active condition, with a maximum of 322 volumes/run.

As previously described (Marsh et al, 2010), image
preprocessing was run in batch mode using MATLAB 7.9
(Mathworks, Natick, MA) and implemented with subrou-
tines in SPM2 (Wellcome Department of Imaging Neu-
roscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm)
and FSL (FMRIB Software Library; www.fmrib.ox.ac.uk).
Preprocessing consisted of slice-time correction using a
windowed Fourier interpolation to minimize its dependence
on the reference slice, motion-correction, and realignment to
the middle image of the middle scanning run (Jazzard et al,
2002). Images with estimates for peak motion exceeding
3 mm displacement or 31 rotation were discarded (Friston
et al, 1996). Motion-corrected functional images of each
participant were then co-registered to the corresponding 3D
spoiled gradient recall anatomical image, which was spatially
normalized to MNI space (avg152T1) with a voxel size of
2 mm3. The normalization parameters were used to warp the
functional images into the same MNI space as the SPGR
image. The normalized images were then spatially smoothed
using a Gaussian-kernel filter with a full width at half
maximum (FWHM) of 8 mm. The spatially smoothed fMRI
time series were then temporally high-pass filtered with a
cutoff frequency of 1/128 Hz via a discrete cosine transform
to remove low-frequency noise, such as scanner drift.

Image Analysis

Extraction of subject-level fMRI signal differences across
the active and control conditions of the spatial learning task
were conducted using general linear models in SPM8. Three
regressors corresponding to specific events that occurred
during each trial of each condition were defined
(Supplementary Figure S1A). ‘Searching’ was defined from
the start of a trial until a committed arm selection. The two
types of outcome possible at an arm’s terminus were
defined either as ‘reward,’ when a monetary reward was
earned, or ‘no-reward,’ when no monetary reward was
allotted. These three regressors were generated by convol-
ving with a canonical hemodynamic response function the
boxcar functions derived from the timing of the onsets and
duration of these events for each participant. For these
regressors, a t-contrast vector was applied to the parameters
(beta_j) that were estimated for each voxel j, producing
5 contrast images for each participant representing
comparisons of the 3 regressors across the 2 conditions
and the 2 outcomes within the active and control conditions
as follows: (1) searching in active vs control condition; (2)
reward in the active vs control condition; (3) no reward in

Table 1 Participant Characteristics

HC CD Test statistic (p)

N 13 13 —

Age (SD) 35.5 (6.3) 39.7 (5.4) 1.80a (0.07)

Range 26–43 30–47

Race/ethnicity

Black 5 6 0.11b (1.00)

Hispanic 5 5

Caucasian 3 2

Years education (SD) 13.7 (1.9) 12.9 (2.1) �1.25a (0.21)

Range 11–17 10–17

Employed 12 4 0.00b (o0.01)

Subjective SES (SD) 6 (1.8) 4.7 (1.3) �1.24a (0.22)

Range 4–9 3–6

Objective SES (SD) 41 (13.2) 25.2 (9.8) �2.91a (o0.01)

Range 18–66 12–45

Parent SES (SD) 36 (10.8) 31.2 (12.4) �1.08a (0.28)

Range 19.5–54.5 13–60.5

Annual incomed (SD) 36 (21) 5 (10) 3.78a (o0.01)

Range 0–90 0–40

Family alcohol historyc

0 9 6 0.07b (0.57)

1 3 4

X2 1 3

Family drug historyc

0 12 7 0.03b (0.07)

1 1 5

X 2 0 1

Tobacco smoking status

Never 6 2 0.09b,e (0.20)

Past 1 0

Current 6 11

PSS (SD) 11.2 (6) 18.7 (9.1) 1.88a (0.06)

Range 0–18 5–36

MSPSS (SD) 68.5 (11.7) 57 (7.6) �2.09a (0.04)

Range 51–83 42–66

Abbreviations: CD, cocaine dependence; MSPSS, multidimensional scale of
perceived social support; PSS, perceived stress scale; SD, standard deviation;
SES, socioeconomic status.
‘Years education’ denotes number of years of school completed (eg,
12¼ completed 12th grade of high school). Subjective SES refers to MacArthur
Scale of Subjective Social Status (Adler et al, 2000). Objective SES refers to
Hollingshead 4-factor index of socioeconomic status (Fox et al, 2006). Parent
SES refers to mean of participants parents’ Hollingshead score.
Subjective SES, MSPSS (Zimet et al, 1988) and PSS (Cohen et al, 1983) data for
3 HC and 4 CD participants are missing. Boldface denotes statistically significant
group differences.
aWilcoxon-Mann-Whitney Test.
bFisher’s Exact Test.
ctable values denote the number of participants with each 0, 1, or X2 first
degree family members with problem alcohol or drug use.
dvalues denote annual income in $1000s.
egroup differences in smoking status were tested by coding based on lifetime
smoking status (note: coding the single past smoker in the cocaine group as
current non-smoker yields the following a test statistic of 0.04 (p 0.10).
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the active vs control condition; (4) reward vs no reward in the
active condition; and (5) reward vs no reward in the control
condition. The delineation of these events allowed the
decomposition of spatial learning and the examination of
group differences in two epochs: searching/navigating the
maze and processing of monetary reward outcome informa-
tion. Subject-level fMRI signal differences across the active or
control conditions and an implicit baseline (consisting of the
unmodeled components of the task) were also extracted in
order to derive parameter estimates for individual partici-
pants at specific peaks of the statistical map for that contrast.

Group composite activation maps were generated using
second-level Bayesian analyses (Friston and Penny, 2003;
Neumann and Lohmann, 2003) covaried with age. Group
differences in brain activations were also detected with
Bayesian methods (Friston and Penny, 2003; Neumann and
Lohmann, 2003; Thirion et al, 2007). Bayesian image
analysis directly assesses the posterior probability of
detecting group effect of neural activity given the data
(Friston et al, 2002; Friston and Penny, 2003). The resultant
posterior probability map (PPM) has no false positives and
therefore requires no additional correction for multiple
comparisons. In these PPMs we report voxels having a
posterior probability of 498.75% and within a cluster of
spatial extent of at least 20 contiguous voxels, to detect
larger clusters of activation of interest.

Behavioral Analysis

Analogous to the BOLD contrast between neural activity in
the active and control conditions, task behavior was
compared across conditions within and between groups.
Linear mixed models (using PROC MIXED) with repeated
measures were implemented in SAS version 8.0 (SAS
Institute, Cary, NC) with performance speed (time to
complete the trials required to obtain the 8 possible
rewards) entered as a dependent variable, condition entered
as a within-subjects factor, and group entered as a between
subjects factor. The model for total time (time taken to
complete both runs) reflects the analytic approach to the
neuroimaging data and was the primary behavioral assess-
ment. Thus, group-by-condition interactions, and main
effect of condition for total time assessed differences in
behavior across conditions and between groups. In addi-
tion, separate models for run 1 and run 2 further assessed
these differences in each run, and T tests separately assessed
within group effects.

RESULTS

Demographic and Clinical Characteristics

The CD and HC participants did not differ significantly in
age, race/ethnicity, educational attainment, subjective
evaluation of socioeconomic status, socioeconomic status
of their families of origin, cigarette smoking status, family
alcohol history, or stress/anxiety (Table 1). Whereas twelve
of the HC participants were employed, four CD participants
worked at the time of the study, producing lower values
of objective economic measures of CD participants.
CD participants also reported poorer social supports.
Although six CD participants and only one HC reported

a family drug history, this group difference was not
statistically significant.

Assessment of CD participants also included substance
use characteristics, and comorbid depression and anxiety
symptoms (Table 2). Cocaine use and abstinence prior to
scanning ranged widely. Comorbid substance use was
prevalent; six met criteria for an Alcohol Use Disorder,
three for Cannabis Abuse, and one for Opioid Abuse. Two
carried a diagnosis of substance-induced mood disorder
(with BDI scores greater than 20), and one had a diagnosis
of Social Anxiety Disorder.

Behavioral Performance

Both groups completed the spatial learning task faster in the
active relative to control condition (Table 3). Specifically, a
main effect of condition was found for the combined time
taken to complete each condition in runs 1 plus 2, in run 2
alone, but not in run 1 alone. Group differences in
performance speed across conditions (group-by-condition

Table 2 Substance Use and Psychiatric Assessments of CD
Participants

Assessment Finding

Cocaine route Intranasal 2

Smoked 4

Both 7

Mean cocaine ingested (grams) Past Year (SD) 445 (727)

Range 10–3640

Lifetime (SD) 6914 (11 901)

Range 83–43 680

Abstinence prior to MRI scanning 31–50 days 2

21–30 days 3

11–20 days 7

5–10 days 1

Alcohol use (SMAST) Mean (SD) 3.5 (3.3)

Range 0–11

o2 4

2 2

43 5

ND 2

Lifetime alcohol diagnosis Abuse 3

Dependence 3

Lifetime cannabis diagnosis Abuse 3

Dependence 0

Lifetime opiate diagnosis Abuse 1

Dependence 0

Depression score (BDI-II) Mean (SD) 8.7 (7.4)

Range 0–21.5

o10 7

10–20 4

420 2

Abbreviations: BDI, beck depressions inventory; ND, no data collected.
S-MAST, michigan alcohol screening test, short version.
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interactions or main effects of group) were not significant.
The longer time taken to complete the same number of trials
in the control relative to the active condition is consistent
with the interpretation that spatial learning is guiding
behavior in the active but not control condition in both
groups. The Supplementary Materials also describe the ways
in which both groups show similar patterns of faster speed,
greater accuracy, and lower perseverative behavior in run 2
compared to run 1, but no group differences in any of these
measures (Supplementary Table S1).

Neural Activity During Spatial Navigation

BOLD signal in the active relative to control condition
during ‘searching’ was associated with significant group-by-
condition interactions in prefrontal, temporal, and parietal
cortices and striatum. In these regions, BOLD signal in the
HC participants was greater in the active compared to the
control condition, whereas BOLD signal in the CD
participants was greater in the control than in the active
condition (Figure 1).

A priori hypothesis testing. Significant group-by-condi-
tion interactions in MTL, particularly in left parahippo-
campal gyrus and hippocampus tail, derived from
activations in amygdala and caudal and mid-parahippo-
campal gyrus, including entorhinal cortex and hippocam-
pus tail in the HC participants, and deactivations in
hippocampus tail in the CD participants (Figure 1a).
Specifically, parahippocampal gyrus activity derived from
increased BOLD signal in the active condition and

decreased BOLD signal in the control condition in the HC
group but not in the CD group (Figure 1b, bottom panel).
Group-by-condition interactions in right ventral and dorsal
caudate and putamen (Figure 1a) derived from decreased
BOLD signal in the active condition and increased BOLD
signal in the control condition in the CD group but not in
the HC group (Figure 1b, first and second panels). These
findings suggest that, as hypothesized, spatial learning in
CD is characterized by both impaired MTL functioning and
abnormal neural activity in striatum.

Neural activity in other brain regions. Group-by-condi-
tion interactions were also detected throughout insula
bilaterally, deriving from activations in the HC group
(Figure 1a, Table 4). Interactions in large portions of
prefrontal cortex (PFC), including dorsolateral and ventro-
lateral PFC, caudal anterior cingulate cortex, derived from
deactivations in the CD group. Both HC and CD groups
contributed to interactions in sensorimotor regions, super-
ior temporal gyri, and frontal pole.

Correlations with cocaine use. Significant inverse asso-
ciations with abstinence (time prior to scanning) were
detected in left caudate nucleus as well as in bilateral
sensorimotor and parietal cortices, suggesting that those
who were abstinent the longest activated these regions the
least when searching the maze (Supplementary Figure S4).
No associations were found between amount of cocaine
ingested and neural activity.

Table 3 Behavioral Performance Across the Active and Control Conditions

Comparison HC CD Main effecta

of condition F(p)

Time to complete run 1 (SD)

Active 181 (82) 219 (103)

Control 202 (73) 232 (101) 2.60 (0.12)

T stat condition active vs. control (p)b � 1.46 (0.17) � 0.84 (0.42)

Main effecta of group F(p) 0.99 (0.33) Group�Conditiona 0.16 (0.70)

Time to complete run 2 (SD)

Active 96 (36) 112 (53)

Control 112 (37) 139 (56) 20.91 (o0.01)

T stat condition active vs. control (p)b � 3.24 (o0.01) � 3.38 (o0.01)

Main effecta of group F(p) 1.46 (0.24) Group�Conditiona 1.40 (0.25)

Total Time (SD)

Active 277 (97) 331 (101)

Control 314 (80) 371 (107) 10.55 (o0.01)

T stat condition active vs. control (p)b � 2.39 (0.03) � 2.23 (0.05)

Main effecta of group F(p) 2.32 (0.14) Group�Conditiona 0.01 (0.91)

Differences between in the active and control conditions in performance speed within and between the HC and cocaine dependence (CD) groups. Upper, middle,
and lower panels show the times taken to complete each condition in run 1, run 2, and in both runs together (respectively).
Boldface denotes statistically significant findings.
aAnalyses of between group performance were conducted using mixed models with repeated measures to generate statistics for main effects of group and condition,
and Group�Condition (group-by-condition interactions).
bAnalyses of within group (active vs. control condition) performance were conducted using paired T tests.
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Neural Activity During Processing of Monetary
Outcomes

We modeled neural activity separately during the two
possible types of reward feedback, ‘reward’ and ‘no-reward.’
We contrasted successes with failures within each condition
and also compared each event type separately across the
active and control conditions.

Processing of unexpected rewards. To identify distur-
bances in reward processing unrelated to spatial learning in
CD participants, we compared neural activity during
‘reward’ and ‘no-reward’ events in the control condition
(Figure 2a and b). In both groups, neural activity during
‘reward’ events was greater than during ‘no-reward’ events.
Although both groups activated ventral striatum in ‘reward’
trials, the CD group activated this region more robustly and
drove this group-by-condition interaction. Group-by-con-

dition interactions were also detected in insula, somatosen-
sory, supplementary motor, and posterior parietal cortices
deriving from the HC group, and in visual and posterior
cingulate cortices and middle temporal gyrus deriving from
the CD group (Figure 2a, Table 5).

Processing of rewards in context of spatial learning. To
define disturbances in reward processing during spatial
learning in CD participants, we compared neural activity
during ‘reward’ and ‘no-reward’ events in the active
condition (Figure 2c and d). In this comparison, only CD
participants contributed to significant group-by-condition
interactions. Interactions in left MTL (amygdala) were
driven by increased activity in the ‘reward’ and decreased
activity in the ‘no-reward’ condition in CD group. Interac-
tions were also detected in left inferior temporal gyrus, left

Figure 1 Neural Activity when Searching the Maze. PPMs of BOLD contrasts during the ‘searching’ event thresholded at posterior probability 498.75%
(z42.24 and equivalent to p40.0125). (a) PPMs superimposed on axial and coronal slices of Colin27 Brain (Montreal Neurological Institute).
(b). Parameter estimates at the statistical maxima of the clusters in the right putamen (24 10 � 6), right caudate nucleus (18 24 8), and left parahippocampal
gyrus (� 23 � 25 � 19). HC and CD columns represent significant BOLD differences between Active and Control conditions in each group. HC and CD
columns represent significant differences between the active and control conditions in HC and CD groups, respectively, with red color scheme representing
Active4Control and blue color scheme representing Control4Active. CD vs HC column represents significant group-by-condition interactions, where red
color scheme signifies either [CD Active4Control]4[HC Active4Control] or [HC Control4Active]4[CD Control4Active], and blue color scheme
signifies either [CD Control4Active] 4[HC Control4Active] or [HC Active4Control] 4[CD Active4Control]. Cd, caudate nucleus; CD, cocaine
dependence; Hi, hippocampus; HT, hippocampus tail; LH, left hemisphere; MTL, medial temporal lobe; PH, parahippocampal gyrus; Pu, putamen; RH, right
hemisphere.

fMRI of spatial learning in cocaine dependence
GZ Tau et al

550

Neuropsychopharmacology



motor cortex, and bilaterally in lingual gyrus (Figure 2c,
Table 5).

DISCUSSION

Animal studies of cocaine administration and human
postmortem studies indicate that cocaine disrupts molecu-
lar and cellular processes in the neural systems that support
episodic memory (and spatial learning). This is the first
study to characterize the functioning of these systems
directly in cocaine-dependent humans. The VR spatial
navigation paradigm allowed us to assess separately the
distinct temporal components of spatial learning (searching
and reward) and distinguish their neural correlates. In the
absence of group differences in spatial learning behavior,
cocaine dependent participants had altered neural function-
ing during these aspects of reward-based spatial learning.

Searching the Maze for Navigational Cues

When searching the maze, BOLD signal was generally
greater in the active compared to the control condition in
HC participants, whereas BOLD signal in CD participants
was greater in the control relative to the active condition.
Additionally, the groups engaged different neural systems.
These findings suggest that individuals with CD differ
profoundly from HC participants in their experience of
spatial navigation regardless of whether learning was
possible. For example, although participants from both
groups experienced the control condition as especially
challenging (because, unknown to them, the spatial cues
were shuffled after each trial to render spatial learning
impossible), the CD group activated frontal, striatal, and
MTL regions more in the control condition than did the HC
group. Perhaps the CD participants increased their cogni-
tive effort during their attempts at spatial learning in the
control condition in ways that the HC participants did not.
Conversely, the CD participants did not engage any regions

during the active condition in any way similar to the HC
group during spatial learning.

The learning model of addiction predicts disturbances
both in episodic memory, which depends on MTL, and in
habit learning, which depends on dorsal striatum (DS), such
that habit learning processes increasingly predominate with
worsening addiction (Kalivas and O’brien, 2008). We
therefore expected to find altered functioning of MTL and
DS in CD participants during spatial learning (ie, when
searching the maze). Consistent with these a priori
hypotheses, MTL activations were reduced in CD compared
to HC participants during spatial learning (ie, ‘searching’ in
the active condition). Also consistent with these hypotheses,
whereas HC participants did not engage DS, CD participants
had decreased DS activity in the active and increased DS
activity in the control condition. An inverse association of
DS activations with abstinence suggests that the most
abstinent CD participants engaged this region the least.

Group differences in MTL and DS activity between typical
and clinical populations whose illness involves MTL or DS
pathology can be interpreted in terms of the interactions
(competitive or cooperative) between these regions, and
thus between the learning strategies that they support. In
one fMRI study of habit learning, for example, MTL activity
was increased and striatal activity decreased in patients with
Parkinson’s Disease, an illness characterized by striatal
degeneration (Moody et al, 2004). Conversely, in patients
with CD, an illness in which habit learning is robust and
episodic memory is impaired, we identified (1) abnormally
reduced MTL activity and (2) abnormal striatal engagement
characterized by amplified modulation of striatum across
experimental conditions that differ in their potential for
learning. Interpreting our findings based on the model of
competition between these regions (Lee et al, 2008; Poldrack
et al, 2001) suggests that in CD, increased potential to use
striatum-based strategies for learning may inhibit activity
within MTL, although an independent dysfunction of MTL
cannot be excluded. Conversely, interpreting our findings
based on a model of cooperation between these brain

Table 4 Group Differences in Neural Activity when Searching the Maze

Brain region Area Side Coordinates Test statistic Cluster size

Putamen – R 24 10 � 6 2.75 49

Caudate nucleus – R 18 24 8 2.70 98

Frontal pole 10 R 28 46 2 2.70 25

Inferior frontal gyrus 44 L � 54 8 10 5.50

47 897

Supramarginal gyrus 40 R 60 � 32 46 5.53

Middle & superior temporal gyri 21 L � 52 4 � 20 5.24

Precentral gyrus 6 L � 52 4 34 5.65

Precentral gyrus 6 R 42 � 6 50 5.35

Fusiform gyrus 19 L � 22 � 78 � 12 5.47

Fusiform gyrus 19 R 26 � 80 � 8 5.21

Cerebellum – L � 18 � 74 � 18 5.68

Cerebellum – L � 10 � 80 � 42 3.17
140

Cerebellum – R 8 � 72 � 36 2.65

Abbreviations: Area, Brodmann Area; Side, hemisphere; L, left; R, right.
Whole brain Bayesian analysis showing cluster sizes (voxels) and locations (MNI) of brain regions where group-by-condition interactions (between the active and
control conditions in CD and HC participants) were statistically significant (po0.05). Test statistics represent significance at the cluster level.
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regions (Sadeh et al, 2011; Voermans et al, 2004) would
suggest that in CD, inefficient representations of MTL-based
strategies for learning may produce a compensatory modula-
tion of striatal activity in the service of maintaining normal
behavioral performance on the task, particularly when the
task is difficult (as it was in our control condition).

Cortical activations also differed across groups. Search-
ing-related activations in HC participants were most
prominent within the cingulo-opercular network, a control

system that supports goal-directed behavior (Dosenbach
et al, 2007), and in ventral and dorsal visual streams,
supporting the visual processing of motion, object location
and identity, and attention (Kravitz et al, 2011; Marsh et al,
2010). Activations in the CD group (in the control
condition) included large portions of lateral PFC, as well
as striatum, suggesting a failure to engage fronto-striatal
circuits in the support of cognitive control functions during
this more effortful of the two task conditions.

Figure 2 Neural Activity when Processing Monetary Reward. PPMs at posterior probability 498.75% (z42.24 equivalent to p40.0125) of BOLD
contrasts of ’reward’ vs ’no-reward’ events that make up reward feedback in (a) the control condition, where monetary rewards are ‘unexpected’ because
they are allotted pseudo randomly and without regards to performance, and (c) the active condition, where rewards are ‘anticipated’ because allotted based
on performance on the spatial learning paradigm. Bar graphs represent parameter estimates at the statistical maxima of the clusters in (b) left ventral striatum
(� 12 8 � 6) in the control condition, and (d) left amygdala (� 14 � 2 � 20). HC and CD columns represent significant differences between the feedback
events in HC and CD groups, respectively, with red color scheme representing ’reward’4’no-reward’ and blue color scheme representing
’no-reward’4‘reward.’ CD vs HC column shows significant group-by-conditions interactions, where red color scheme signifies either [CD ’reward’4
’no-reward’]4[HC ’reward’4’no-reward’] or [HC ’no-reward’4’reward’]4[CD ’no-reward’4’reward’], and blue color scheme signifies either [CD
’no-reward’4’reward’] 4[HC ’no-reward’4’reward’] or [HC ’reward’4’no-reward’] 4[CD ’reward’4’no-reward’]. Amy, amygdala; IPL, inferior parietal
lobule; LH, left hemisphere; Motor, motor cortex; PCC, posterior cingulate cortex; RH, right hemisphere; SMA, supplementary motor area; VS, ventral
striatum; Visual, visual cortex..
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Processing Monetary Reward Outcomes
Separately modeling each type of monetary outcome
allowed a detailed examination of reward processing in
CD. We detected increased sensitivity of VS to receipt of
monetary reward compared to omission of reward in the
CD group when the monetary outcome was unexpected
(control condition), but no signal in VS in either group
when the monetary outcome was anticipated and associated
with spatial learning (active condition). These findings are
consistent with studies showing cocaine-associated in-
creases in BOLD response within VS to uncertain rewards
(Jia et al, 2011). Conversely, during spatial learning
we detected increased activity in the amygdala in CD
(but not HC) participants when receiving monetary
rewards, but no signal in either group when spatial learning
was rendered impossible (control condition). Our findings
suggest that in both groups, but especially in CD, activity in
distinct emotional regions (ie amygdala and VS) distinguish
reward-based learning from reward in the absence of
learning.

We identified neural processing specific to each type of
monetary reward (reward or no-reward) during spatial
learning by comparing BOLD signal across the active and
control conditions when experiencing each outcome. Neural
activity when processing rewards during spatial learning
was reduced in CD, but not HC participants, within fronto-
parietal regions, motor cortex, and MTL, compared with
activity when processing rewards in the control condition.
These same regional group differences in activation were

accentuated substantially during the omission of rewards.
These findings support our general conclusion that the
neural systems that subserve reward-based spatial learning
are profoundly altered in CD.

Limitations and Conclusions

Our findings are the first to demonstrate disturbances in the
functioning of MTL- and striatum-based neural systems for
learning and memory that are associated with cocaine
dependence in humans, and consistent with animal models
of cocaine use. A limitation of this study includes the
possibility that the additional difficulty of the control
condition (due to reward unpredictability) contributed to
group differences in brain activations. This unpredictability,
however, was necessary for isolation of the neural correlates
of reward-based learning. Our study sample was modest
and consisted of only males, thereby requiring replication of
our findings in a larger sample of both genders. Sex
differences are reported in many aspects of SUD (Brady and
Randall, 1999) and in spatial learning (Astur et al, 1998;
Moffat et al, 1998), suggesting that studying only males may
have improved our ability to detect group differences. The
groups differed in socio-demographic and clinical char-
acteristics, but in ways consistent with the CD literature
(Rounsaville, 2004). Together, our findings point to
dramatically altered neural correlates of episodic memory
that may profoundly influence many aspects of how persons
with CD navigate their real, quotidian world.

Table 5 Group Differences in Neural Activity when Processing Monetary Rewards

Brain region Area Side Coordinates (x y z) Test statistic Cluster size

‘Reward’ vs ‘no-reward’ outcomes in the control condition

Ventral striatum – L � 12 8 � 6 3.01 142

Visual cortex 17,18 R 6 � 84 � 4 2.83 285

Insula – R 44 0 12 � 3.19 243

Primary somatosensory cortex 1,2 R 46 � 26 40 � 2.84 174

Supplementary motor area 4 L � 6 � 24 56 � 3.37 138

Superior parietal lobule 7 L � 36 � 40 50 � 2.63 62

Posterior cingulate cortex – L � 10 � 38 30 2.81 40

Middle temporal gyrus 21 L � 58 � 30 � 14 2.89 37

Cerebellum – R 34 � 70 � 22 2.93 52

‘Reward’ vs ‘no-reward’ outcomes in the active
condition

Hippocampus/amygdala – L � 14 � 2 � 20 2.98 60

Parahippocampal gyrus 36 L � 36 � 22 � 20 2.76 47

Inferior parietal lobule 40 L � 48 � 28 30 3.08
171

Primary somatosensory cortex 1 L � 46 � 24 46 2.48

Inferior temporal gyrus 20 L � 40 2 � 32 2.59 46

Lingual gyrus 19 L � 20 � 60 0 2.98 249

Lingual gyrus 19 R 22 � 62 2 2.86 68

Cerebellum – R 38 � 54 � 32 2.65 28

Cerebellum – – 0 � 44 � 38 2.81 31

Abbreviations: Area, Brodmann Area; Side, hemisphere; L, left; R, right.
Whole brain Bayesian analysis showing cluster sizes (voxels) and locations (MNI) of brain regions where group-by-condition interactions (between the active and
control conditions in CD and HC participants) were statistically significant (po0.05). Test statistics represent significance at the cluster level.
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